Impulsive End Condition for Diffusion Equation
نویسندگان
چکیده
منابع مشابه
Impulsive End Condition for Diffusion Equation
for 0 ^ x ^ 1, with initial condition y(x) 0) = 0 and end conditions y(0, t) = 1, 2/(1, i) = 0. Here x is position and t is time. The problem as stated is a nondimensional version of a heat-conduction problem in which a fixed temperature is suddenly applied to one end of an initially cold bar. Other diffusion problems involving impulsive boundary conditions may require a more complicated descri...
متن کاملSolutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملDegenerate Convection-Diffusion Equation with a Robin boundary condition
We study a Robin boundary problem for degenerate parabolic equation. We suggest a notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations illustrate some aspects of solution behaviour. Monodimensional experiments are presented. Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.
متن کاملsolutions of diffusion equation for point defects
an analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the robin-type boundary conditions. the distributions of point defects for different migration lengths of defects have been calculated. the exact analytical solution was used to verify the approximate numerical solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1965
ISSN: 0025-5718
DOI: 10.2307/2003940